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Abstract—Interactive rendering of translucent materials in vir-
tual worlds has always proved to be challenging. In our work, we
develop a voxel illumination framework for translucent materials
illuminated by area lights. Our voxel illumination framework
consists of two voxel structures. They are the Enhanced Sub-
surface Light Propagation Volumes (ESLPV), which handles the
local translucent material appearance and the Light Propagation
Volumes (LPV), which handles indirect illumination for the entire
scene. Using a set of sparsely distributed Poisson disk samples
in the ESLPV and LPV, illumination can be gathered from area
lights. A uniform set of Poisson disk samples on the translucent
objects is resampled and chosen as Translucent Planar Lights
(TPLs) and is used to distribute lighting from translucent objects
into the LPV by an additional gathering process. Our technique
allows for direct and indirect illuminations from highly scattering
translucent materials to be rendered interactively under area
lighting at good quality. We can achieve similar effects, such
as scattered light illumination from translucent materials, when
compared to offline renderers without precomputations.

Keywords—Translucent Materials; Area Lights; Direct Illu-
mination; Indirect Illumination; Interactive Rendering; Virtual
Worlds

I. INTRODUCTION

Interactive rendering of scenes with highly scattering
translucent objects is difficult to compute efficiently. Although
approximation techniques can model the local illumination
of translucent materials, techniques that model their indirect
illumination interactively on surrounding surfaces are rarely
researched. Translucent objects can act as area lights when
they release scattered light to their surroundings to produce
visual effects in the appearance as soft diffuse color bleeding,
e.g., Figs. 1a, 1b. Although it is easier for rendering algorithms
to work with translucent materials using point light sources,
area lights often produce soft shadows which exhibit coloration
by scattered lighting within the translucent materials. This
effect contributes greatly to the visual realism in interactive
rendering. This effect is not present on diffuse surfaces as
they are usually optically thick (e.g., Fig. 1c). Additionally
no indirect illumination will reach the external objects as it is
physically impossible.

Monte Carlo techniques [1], [2] can render interreflections
from translucent materials but they are too computationally
expensive. Improvements in other methods, such as photon
mappings, allow translucent materials to produce indirect illu-

mination effects [3], [4], but they are impractical for generating
images at interactive rates. Current radiosity [5] approaches
allow for real-time computations, but at the expense of long
precomputation time and large storage data for precomputing
form-factors.

In this paper, we present a voxel based illumination ap-
proach that renders translucent objects under direct area light
illumination and renders indirect illumination from translucent
and diffuse surfaces interactively without precomputations. We
present three main contributions in this work.
• A Poisson disk sampling solution to allow lighting in-

formation from area lights to be injected into a voxel
structure for rendering translucent objects

• A Poisson disk sampling solution to allow lighting in-
formation from area lights to be injected into a voxel
structure for rendering indirect illumination for diffuse
surfaces.

• An interreflection framework for distributing indirect illu-
mination from translucent objects to their nearby diffuse
surfaces. This allows translucent objects to be treated as
area lights.

Our proposed illumination pipeline allows for interactive
rendering without any precomputations and achieves the soft
diffuse color bleeding effect of scattered light from translucent
materials similar to offline renderers.

II. RELATED WORK

In recent years, several real-time techniques have been
developed for translucent materials and its scattering phe-
nomenon known as subsurface scattering. Lensch et al. [7]
formulated the subsurface scattering effect as calculation
of throughput between vertices using radiosity techniques.
Mertens et al. [8] and Carr et al. [9] suggested using a
hierarchy of clustered triangles and multi-resolution mesh
respectively similar to hierarchical radiosity. Yu et al. [5]
extended the radiosity method for subsurface scattering to sup-
port multiple bounce global illumination. However, radiosity
approaches requires a large number of form factors which
may in turn require a large amount of computation as well
as storage. Wang et al. [10] and Adam et al. [11] devised
tetrahedralization techniques for discretizing a mesh into a 4-
connected mesh structure. Their techniques are able to handle



(a) Our result (b) Mitsuba Path Tracer Global Illumination (c) Diffuse material

Fig. 1. Rendering of a water glass with a red scattering material illuminated with a single area light source inside the cup at 1024x768. We show our rendering
in (a) with both the direct and indirect illumination components, and a reference image generated by Mitsuba Path Tracer (64 samples per pixel) in (b). The
translucent material in the reference image is rendered with Photon Beam Diffusion method [6]. Image (a) is rendered in 146 ms. Image (b) is rendered in
54.96 seconds. Image (c) shows the same experiment setup but with a diffuse water glass. No light is scattered to the exterior of the water glass.

much more complex geometries, especially those with thin
features. However, the time needed to process the mesh to a
suitable structure, though automated, may still take minutes.
Geist et al. [12] proposed using a voxel-based approach
to simulate a light propagation process. Their process was
much more storage efficient but computationally expensive.
Bernabei et al. [13] proposed reducing the principal directions
of propagation to six directions which enables rendering to be
done at interactive rates. Borlum et al. [14] reformulated the
LPV technique, and changed the LPV into a Subsurface Light
Propagation Volumes (SSLPV). Unlike the LPV, the SSLPV
is a voxelized structure of an object and not a scene. The
flux is injected into the material and distributed by a propa-
gation process. An extension using a hierarchical propagation
approach was proposed by Koa et al. [15]. Their approach,
the ESLPV, allows light to scatter across further distances
simulating highly scattering materials. However, these works
deal with local illumination models and do not extend to
indirect illumination.

Rendering dynamic indirect lighting requires many ray-
triangle intersection tests. Many algorithms work on determin-
ing whether a pixel should be illuminated based on adaptive
algorithms that simplify either the scene or the ray tracing
process. In recent years, emphasis has been given to algorithms
that work on voxel-based illumination to compute dynamic
illumination on the fly. Crassin et al. [16] proposed an indirect
illumination algorithm that uses a sparse voxel octree (SVO)
to store illumination and geometric information in its voxels.
The SVO structure allowed an efficient cone tracing solution
to reduce the costs of ray tracing, as well as to generate
filtered mipmaps which allows for blending of illumination
information across different resolutions. However, it requires
a large memory space for pre-allocating voxel information,
which are usually larger than the acceleration structure used
for ray tracing. Sugihara et al. [17] proposed using a layered
shadow map to store illumination in the Reflective Shadow
Maps (RSM) [18] while voxel structures continue to hold
geometric information. This approach significantly reduces

memory consumption. Kaplanyan et al. [19] proposed the
Light Propagation Volumes (LPV) as an extremely memory
efficient solution for single and multi-bounce indirect diffuse
illumination. The LPV uses 4-Spherical Harmonics coeffi-
cients for each color channel to represent the flux distribution
in each voxel. The initial flux distribution is defined using
a RSM. The position, normal and flux density of each texel
obtained in the RSM are injected into the corresponding
voxel in the LPV. The LPV then undergoes a propagation
process, where each step of the propagation process allows
the flux distribution in each voxel to be distributed to its
neighbouring voxel. After the flux distribution in the LPV has
reached equilibrium, the final voxel results can be used as a
representation of indirect diffuse illumination. Unfortunately,
using the RSM restricts the LPV to only point and spot lights.
Hedman et al. [20] proposed using a dynamic distribution
of point lights that contributes to the visible pixels for each
frame. In each frame, visible point lights can be re-used and
new ones can be created. A heuristic sample distribution is
defined to obtain temporal stability. In our work, we use the
LPV approach with a fixed sparse set of Poisson-disk samples
which achieves temporal stability and speed at the expense of
accuracy.

III. OUR PIPELINE

We combined the ESLPV, in Koa et al. [15] and LPV [19]
for our illumination pipeline. The ESLPV renders local sub-
surface scattering effects while the LPV distributes the indi-
rect illumination from diffuse surfaces as well as translucent
objects. The 3D objects in our scene and the translucent
objects are voxelized for the LPV. The translucent objects
can be voxelized according to the solid voxelization algorithm
described in Schwarz et al. [21]. Voxelization allows us to
store geometric information and material properties into these
voxels, which are used for propagation. In our work, we use
the LPV structure from Doghramachi’s work [22] because of
the way geometric blockers are represented in the voxels. Their
method of storing normals of blockers into a tetrahedron face
allows us to extract the closest normals relevant to the surface



Fig. 2. The pipeline of our work with the indirect illumination combined with the direct illumination output.

we are rendering. This allows more accurate illumination
computations.

As previous work for the ESLPV [15] and LPV [19] did
not deal with area light illumination, we design a complete
framework for rendering translucent materials under area lights
as shown in Fig. 2. Our system starts off with area light
and scene information (e.g., mesh information). We generate
Poisson disk samples [23] for both our translucent and diffuse
objects. The Poisson disk sampling algorithm produces an
ideal distribution with a minimum Euclidean distance between
samples. This makes it ideal for generating sparse samples for
rendering. We use the notation diffuse Poisson disk samples
(DPDS) and translucent Poisson disk samples (TPDS) to
describe the two sets of Poisson disk samples generated on
diffuse and translucent surfaces respectively. Every TPDS
will have its light intensity computed and transferred into
the ESLPV for injection. The ESLPV renders the translucent
object with the given set of TPDS. This set of TPDS are
downsampled to a reduced set of translucent planar lights
(TPLs). This set of TPLs is used to represent the translucent
object as an area light source. The intensities of the TPLs can
be obtained by sampling the ESLPV voxels with a rendering
equation after the propagation stage has been completed.

Next, we compute the reflected flux at the location of
each DPDS. The reflected flux is computed with both the
area light information and the TPLs, indicating that each
DPDS now contains the reflected flux of direct illumination
from the area light and the TPLs. The DPDS are injected
by accumulating their intensities with previous TPLs into the
LPV and rendered. By propagating the light intensity in the
LPV designed by Doghramachi [22], we are able to simulate
the indirect illumination of translucent materials as well as
diffuse materials in the scene. The final rendered image is
combined with our direct illumination (for diffuse surfaces),
which handles area light direct illumination. We implemented
the previously proposed method of direct illumination (Koa et
al. [24]) using multi-resolution rendering under area lighting.

This method is able to produce high quality soft shadows and
is suitable for overlaying our indirect illumination component.
The right side of Fig. 2 shows the various output of each
injection stage.

A. Direct illumination for translucent objects from area lights

We first distribute a set of TPDS on the surface of a
translucent object. For each Poisson disk sample, we perform
a ‘gathering’ operation in which the transmitted flux from
each refracted light ray from the area lights is computed.
We create a ESLPV voxel structure of 323 resolution for the
translucent objects. The light intensities are stored according to
the refracted light directions. The transmitted flux entering the
translucent medium from each refracted light ray is converted
to its SH representation of a clamped cosine lobe and is
accumulated into the voxels corresponding to their locations.
We describe the transmitted flux at point xi from a light ray
emitted at a virtual point light (VPL) (from uniformly divided
patch from the area light) location xlight from direction ~ω as
Lt(xi, ~ω) in (1a). We use xlight as the representative point for
each uniformly divided patch on the area light from uniform
sampling. T (~ω, ~ω′) refers to the Fresnel term for describing
the fraction of light energy transmitted into the translucent
material after entering from direction ωk and refracted to
direction ~ωk′ . A represents the area of a uniform patch on the
area light defined by the VPL from uniform point sampling.
A is used as part of the form factor computation between
area to point contribution. ~N refers to the normal of the
TPDS, and ~L refers to the normalized ray direction from
the TPDS to the light. Iintensity refers to the light intensity
from the VPL. Equation 1a can be converted to its Spherical
Harmonics (SH) representation as in (1b) where the injected
flux for each Poisson disk sample is represented in the SH
coefficients, c(

~ω′)
lm , of a clamped cosine-lobe oriented at the

refraction vector, ~ω′. ylm refers to the SH basis functions.
Fig. 3 describes how the refracted light energy is injected
into the ESLPV voxels. The SH coefficients in each ESLPV



voxel are accumulated by summation and then inversely scaled
by the total number of TPDS located in them. Once the
light intensities are injected into the ESLPV voxels, we can
perform the light propagation as usual, which creates the local
information required for rendering the translucent appearance.

Lt(xi, ~ω) =
T (~ω, ~ω′)( ~N · ~L) ∗ ( ~Nlight · ~−L) ∗A ∗ Iintensity

|xi − xlight|2
,

(1a)

Lt,lm(xi, ~ω) =
[
∑∞
l=0

∑l
m=−l c

( ~ω′)
lm ylm]

π
∗ Lt(xi, ~ω) (1b)

B. Indirect illumination from area lights

1) Indirect illumination from direct area light sources:
As the usual LPV scheme does not handle area lights, our
proposed solution generates a set of Poisson disk distributed
samples [23] on the 3D scene we are rendering. The illumina-
tion for each Poisson disk sample is computed by performing
a ‘gathering’ operation to the light source. We only gather
contribution from rays that pass the visibility test. We compute
the reflected flux, LV PL, for each diffuse Poisson disk sample,
xi, which is a summation of the contribution of each individual
light ray to the sample point (refer to (2b)):

Fs = ( ~N · ~Lk) ∗ ( ~Nlight · ~−Lk), (2a)

LV PL(xi, ~ω) =
1

π

K∑
1

Fs ∗A ∗ Iintensity ∗ ρ
|xi − xk light|2

(2b)

where ~N refers to the normal of Poisson disk sample xi. ~Lk
refers to the vector from xi to a VPL, xk light on the light.
~Nlight refers to the normal direction of the light. Fs refers to
the foreshortening factor. Iintensity refers to the intensity at
xk light with area A from uniform sampling. A is used for
area to point form factor computation. ρ refers to the diffuse
coefficients of the Poisson disk sample.

The reflected flux in each Poisson disk sample is then
deposited into the respective voxel at one unit normal distance
away from the Poisson disk sample in their Spherical Harmon-
ics (SH) representation. Following Kaplanyan et al. [19], we
can first use a clamped cosine lobe oriented in the z-axis,
represented by zonal harmonics, rotated to the direction ~N .
The flux distribution when converted to SH Coefficients is
represented in (3). As the accumulated reflected flux is defined
as the integral of each individual light ray over a hemisphere,
a normalization factor of 1

π is required to conserve the energy.

I(xi, ~ω) =
LV PL(xi, ~ω)

π
∗
∞∑
l=0

l∑
m=−l

c
( ~N)
lm ylm (3)

In the LPV implementation, we are only required to store
the four SH coefficients (two bands) multiplied by LV PL(xi,~ω)

π
into each voxel. Each color channel (R,G,B) is stored sepa-
rately as four float values of SH coefficients each. Once we
have obtained the SH coefficients by a cosine lobe orientated in

direction ~N , we can scale these coefficients by the irradiance
of the Poisson disk sample. For Poisson disk samples that lie
in the same voxels, the intensities can be accumulated in the
same voxel.

The remaining process follows the standard LPV [19]
pipeline. Propagation is performed to distribute the light inten-
sity throughout the LPV. The final result is an approximation
to the indirect illumination distributed by diffuse surfaces. We
refer to Fig. 3 for the light injection process from area lights.

2) Indirect illumination from translucent materials: Scat-
tered light from the translucent material can be represented
by a sparse set of planar lights, with a point location allocated
to its center. We downsample the set of TPDS that were
generated earlier in Section III-A to easily get a reduced set
of samples known as TPLs. The main intention for down-
sampling is to ensure that we are able to reduce the total
number of samples for representing the translucent object. This
reduces computation time significantly. For our downsampling
algorithm, we basically reduced the 323 ESLPV to a 83

representation and temporarily deposit each TPDS into their
corresponding locations in the 83 voxel volume. We then
iterate each voxel of the 83 voxel volume and find the TPDS
that is nearest to the center of each of the voxels in the 83

volume. Since the original Poisson disk sampling approach by
Bowers et al. [23] distributes samples according to some voxel
resolution, our downsampling approach would still allow us
to reasonably obtain samples that are evenly distributed. The
nearest TPDS in each voxel is chosen as the TPL. This chosen
sample maintains its location on the surface of the object,
unlike interpolation methods which might provide a non-
surface sample. TPLs are represented as virtual planar light
sources with an area allocated to them. This representation
corresponds to how voxels are represented as planar area lights
in the SSLPV [14]. The output radiance of each TPL can be
computed by (4). Avoxel is the area of a voxel face of the
ESLPV. There is no outgoing Fresnel term as it is incorporated
when DPDS ‘gather’ illumination in the irradiance term from
the TPL ( 5b).

ITPL(xTPL, ~ωo = ~n) =
2

Avoxel

(√
1

4π
c
~(n)
00 +

1

2

√
3

4π
c
~(n)
10

)
(4)

Once a set of TPLs is computed, each of the DPDS will
perform a ‘gathering’ operation on the TPLs (refer to Fig.
4). DPDS are represented in red circles while TPLs are
represented in green circles. The reflected flux contribution
from each TPLs is then added to the original illumination
contribution LV PL(xi, ~ω) from area lights in Section III-B.
This contribution is then stored into the respective voxel
location corresponding to each of the DPDS’ location. The
reflected flux contributed by K number of TPLs is computed
in (5b), where K is the number of TPLs visible from xi.
ITPL(xTPL, ~ωo = ~n) is the intensity of the TPL computed
by (4). T (~ω, ~ω′) is the Fresnel transmission term describing
the percentage of light energy leaving the translucent medium



Fig. 3. Injecting transmitted and reflected light flux into ESLPV and LPV, respectively, with area lights. For diffuse materials, light is injected into the LPV
voxel above the surface. For translucent materials, light is injected into the ESLPV voxel on the surface.

from direction ~ω′ to ~ω. Fs is the foreshortening factor as
described in (2a). ρ is the albedo of the material at xi. ATPL
refers to the surface area represented by each TPL. This is
computed by dividing the total surface area of the translucent
object with the total number of TPLs on the object.

LTPL Single(xi, ~ω) =
FsATPLT (~ω, ~ω′)ITPL(xTPL, ~ω′ = ~n)

|xi − xTPL|2

(5a)

LTPL(xi, ~ω) =
ρ

π

K∑
1

LK TPL Single (5b)

Fig. 4. Injecting light intensities into LPV with TPLs. DPDS are represented
in red circles while TPLs are represented in green circles.

IV. IMPLEMENTATION

A. Poisson disk samples generation

We implemented Bowers et al. [23] Poisson disk sampling
method as it properly distributes samples across a regular grid

structure. Although a GPU implementation of their algorithm
has been created [25], we found that it is unnecessary to
re-generate samples regularly. A new set of Poisson disk
samples would only be required when a new diffuse surface
or translucent object is added to the scene, or if any object in
the scene is deformed.

B. Gathering operations on Poisson disk samples

As we need to generate multiple visibility rays from our
Poisson disk samples to VPLs/TPLs, we utilize NVIDIA’s
CUDA and OptiX Prime [26] for our ray creation and ray
tracing process. Firstly, a ray is created from every (diffuse
and translucent) Poisson disk sample to a VPL on the area
light source. The visibility tests are performed using OptiX
Prime.

For every visible ray from a VPL to the TPDS, the transmit-
ted flux is computed and compressed into its SH basis based
on its refraction direction. Lt(xi, ~ω) is projected into the SH
coefficients of a clamped cosine lobe oriented at refracted
direction ~ω′ in (1b). c(

~ω′)
lm refers to the SH coefficients of

the clamped cosine lobe based on the refracted ray direction
~ω′. Using CUDA’s SHFL functions, the illumination can be
gathered quickly if the samples are in multiples of warp sizes
(16,32). Warps are units of threads which CUDA is able
execute them concurrently. The gathered transmitted flux for
each TPDS at position, xi, is computed by accumulating the
contribution of every visible ray in (6). We only need to inject
the values of four SH coefficients for each color channel,
as described by Lvt,lm(xi, ~ω) in (7), into the relevant voxel
location of the ESLPV.

L(xi, ~ω) =

K∑
1

Lkt,lm(xi, ~ω), (6)



Lvt,lm(xi, ~ω) =float4(
c0,0 ∗ Lt(xi, ~ω)

π
,
c1,−1v ∗ Lt(xi, ~ω)

π
,

c1,0 ∗ Lt(xi, ~ω)

π
,
c1,1 ∗ Lt(xi, ~ω)

π
)

(7)
Next, the TPDS is downsampled to TPLs, which are usually

less than 256. All DPDS would then gather illumination (5b)
from TPLs after the TPLs have been computed with the results
from the ESLPV using (4). Each TPL now represents an area
light source with radiance and normals.

C. Indirect illumination voxels

Reflected flux from all diffuse Poisson disk samples, after
‘gathering’ from VPLs and TPLs, are injected into the LPV.
The SH coefficients of the reflected flux are computed by
multiplying the reflected flux of the Poisson disk sample and
the clamped cosine SH lobe of the normal vector of the
Poisson disk sample. The SH coefficients of the reflected
flux from the Poisson disk samples are injected into the
LPV at an offset of one unit voxel away in the normal
direction. We keep a counter using a 3D texture and GLSL’s
imageAtomicAdd function to keep track of the number of
samples inside each voxel. Ultimately, the intensities stored in
the voxels should be normalized by the number of samples
in them. This normalization is not required in the original
ESLPV and LPV as the normalization has already been done
by dividing the total light energy by the number of texels in
the RSM. However, in our case we are unable to use a RSM
to represent an area light.

V. RESULTS AND DISCUSSION

We show the rendering results of four scenes: a translucent
water glass, a translucent Buddha model and a plane, a
translucent bunny in a colored Cornell box, a translucent
dragon in the Sponza scene in Figs. 1a, 5a, 6a, 7, respectively,
in 1024x768 pixel resolution. We tabulate the computation
timings in Table I. The rendering was performed on an Intel
i5 3.40GHz CPU with an NVIDIA GeForce GTX 980 GPU.
The direct illumination for diffuse surfaces in our results are
rendered with a screenspace multi-resolution technique [24],
with 64 samples per fragment. The direct illumination provides
the soft shadows effects. The translucent materials in our
reference images (generated by Mitsuba [27]) are rendered
with Photon Beam Diffusion [6]. Due to the sparse distribution
of the Poisson disk samples, light ‘gathering’ operations are
considered to be cheap operations that can be computed in
tens of milliseconds. Furthermore, these ‘gathering’ operations
only need to be performed when there is a change in object
positions, material properties or light positions.

In Fig. 1a, we placed an area light inside a water glass
so that it would be easier to only see the indirect illumination
produced by the translucent materials as no direct illumination
would be able to penetrate the water glass. Our result produced
a reddish color bleed as observed on the floor outside the water
glass. The reddish color is also observed in the reference image

in Fig. 1b. In Fig. 5, we illuminate a Buddha model floating on
top of a planar surface. Fig. 5a shows a soft shadow produced
by the Buddha model. The shadow is not completely dark and
has a yellowish faint partially illuminated by light from the
translucent material. These effects are more evident in the soft
shadow region of the shadows. A reference image is provided
in Fig. 5b. In Fig. 6a, we can see that there is faint coloration
of reddish and greenish in the shadows of the bunny. This
coloration is created by the indirect illumination from both
the colored walls of the Cornell box and the scattered light
from the bunny. We show that the rendered reference image
with the Mitsuba renderer’s path tracer [27] in Fig. 6b and the
coloration in their shadows are similar to ours. In Fig. 7a, we
specifically render the indirect illumination only. It can be seen
that scattered green light is present around the diffuse surfaces
near the dragon. The scattered green light is also present in
the soft shadows areas formed by the pillars or the dragon in
Figs. 7b, 7c.

With reference to Table I, ‘Direct Illum.’ refers to the time
used for rendering direct illumination (excluding translucent
material rendering) using a multi-resolution screenspace ap-
proach [24]. ‘Poisson Gathering’ refers to the time used in
‘gathering’ illumination from Poisson disk samples generated
on diffuse and translucent surfaces after being lit by VPLs.
‘TPL Gathering’ refers to the time needed for all diffuse
Poisson disk samples to gather light from TPLs. ‘ESLPV’
represents the time needed to render the illumination on the
translucent object using our ESLPV method. ‘LPV’ represents
the time required for the LPV to render indirect illumination
on the entire scene. We can observe that direct illumination
of translucent materials using area lights can be quickly
computed and rendered in less than 10 ms. Indirect illumi-
nation for the entire scene can be rendered in less than 20
ms for most of our results. ‘Total time’ refers to the time
required for rendering a single frame with both direct and
indirect illuminations. The total time for rendering appears
high due to the direct illumination component. However, our
indirect illumination technique is independent of the direct
illumination technique used. The columns ‘DPDS’, ‘TPDS’
and ’TPL’ describe the number of samples required for diffuse
Poisson disk samples, translucent Poisson disk samples and
Translucent Planar Lights, respectively. One advantage of
voxel-based techniques is that the timings for ESLPV and LPV
do not scale up with the scene complexity, which allows our
indirect illumination for translucent materials to be rendered
at fast speed.

We do note that there are some differences compared to
the reference images in some areas of the images. In Fig.
6, we note that our result (Fig. 6a) has a different ceiling
color compared to the reference image. This is because the
LPV is not a physically-based algorithm and it uses a very
abstract representation of geometry and reflectance property to
distribute indirect illumination. Hence, we cannot expect the
same quality of results as that in radiosity, photon mapping
or path-tracing methods when rendering multi-bounce illumi-
nation. However, we can still expect color-bleeding effects to



(a) Our result (b) Mitsuba Path Tracer Global Illu-
mination

Fig. 5. Rendering of a Buddha object with a material property simulating
an apple in (a) and (b). We show our rendering in (a) with both the direct
and indirect illumination components, and the reference generated by Mitsuba
Path Tracer (64 samples per pixel) in (b) with the Photon Beam Diffusion
method [6]. Image (b) is rendered in 28.97 seconds.

(a) Our result (b) Mitsuba Path Tracer Global Illumi-
nation

Fig. 6. Rendering of a Stanford bunny with material properties simulating
jade in a colored Cornell box. We show our rendering in (a) with both the
direct and indirect illumination components, and the reference generated by
Mitsuba Path Tracer (64 samples per pixel) and the Photon Beam Diffusion
method [6] in (b). Image (b) is rendered in 54.21 seconds.

be rendered. We are unable to simulate high frequency effects
for translucent materials with weak scattering properties due
to the highly compressed nature of our spherical harmonics
representation. However, this is compensated through its low-
memory consumption and fast rendering speed.

VI. CONCLUSION AND FUTURE WORK

We have presented an efficient and low cost solution for
illumination of translucent materials from area lights. This
is first done by generating a set of Poisson disk samples
over the translucent materials and performing an illumination
‘gathering’ operation over them. The Poisson disk samples are
then injected into the ESLPV [15], which distributes the light
intensities through the translucent materials. Similarly, Poisson

disk samples are distributed around diffuse surfaces in the LPV
for gathering direct illumination from the area lights.

In order to further illuminate the scene using the translucent
objects, each of the Poisson disk samples in the LPV will
gather illumination from a downsampled set of translucent
planar lights (TPLs) on the translucent objects. These samples
are then injected into the LPV. The LPV distributes the
light, simulating indirect illumination with contributions from
the diffuse and translucent objects. Our method efficiently
distributes indirect illumination with very little computation
overheads.

Using a Poisson disk sampling approach, we ensure that
translucent materials and their indirect illuminations can be
rendered with good quality under area lighting. This method
achieves interactive rendering while remaining precomputa-
tionless and maintaining low storage costs.

The diffuse Poisson disk samples (DPDS) in the scene
increase with scene complexity, hence leading to a overall
increase in time for ‘gathering’ illumination from TPLs. A
multi-resolution approach should be designed to select an
appropriate set of samples. Other optimizations such as De-
bevec’s light probe sampling [28] could be more efficient in
choosing our TPLs from our TPDS. However, it was designed
for sampling a 2D environment map but it can well be
extended to simulate importance sampling for clustering of
TPLs.
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